Fecal microbiota composition is related to brown adipose tissue 18F-fluorodeoxyglucose uptake in young adults.

Journal of endocrinological investigation. 2023;46(3):567-576

Other resources

Plain language summary

Brown adipose tissue (BAT) is a tissue that dissipates energy through the action of the uncoupling protein-1. Moreover, BAT takes up and oxidises glucose and lipids, as such working as a nutrient sink, and through its endocrine function may have cardiometabolic benefits. The aim of this study was to investigate the association of fecal microbiota composition with BAT volume and activity in young adults. This study was a cross-sectional study of 92 young healthy adults (27 men and 65 women, age: 18–25 years old). Results showed that the relative abundance of: - specific genera (Akkermansia, Lachnospiraceae sp., and Ruminococcus) were negatively correlated with BAT volume and activity. - Bifdobacterium genus was positively correlated with BAT activity. Authors concluded faecal microbiota is involved in the regulation of glucose uptake by human BAT and other metabolic tissues including white adipose tissue and skeletal muscles in young adults.

Abstract

OBJECTIVE Human brown adipose tissue (BAT) has gained considerable attention as a potential therapeutic target for obesity and its related cardiometabolic diseases; however, whether the gut microbiota might be an efficient stimulus to activate BAT metabolism remains to be ascertained. We aimed to investigate the association of fecal microbiota composition with BAT volume and activity and mean radiodensity in young adults. METHODS 82 young adults (58 women, 21.8 ± 2.2 years old) participated in this cross-sectional study. DNA was extracted from fecal samples and 16S rRNA sequencing was performed to analyse the fecal microbiota composition. BAT was determined via a static 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography scan (PET/CT) after a 2 h personalized cooling protocol. 18F-FDG uptake was also quantified in white adipose tissue (WAT) and skeletal muscles. RESULTS The relative abundance of Akkermansia, Lachnospiraceae sp. and Ruminococcus genera was negatively correlated with BAT volume, BAT SUVmean and BAT SUVpeak (all rho ≤ - 0.232, P ≤ 0.027), whereas the relative abundance of Bifidobacterium genus was positively correlated with BAT SUVmean and BAT SUVpeak (all rho ≥ 0.262, P ≤ 0.012). On the other hand, the relative abundance of Sutterellaceae and Bifidobacteriaceae families was positively correlated with 18F-FDG uptake by WAT and skeletal muscles (all rho ≥ 0.213, P ≤ 0.042). All the analyses were adjusted for the PET/CT scan date as a proxy of seasonality. CONCLUSION Our results suggest that fecal microbiota composition is involved in the regulation of BAT and glucose uptake by other tissues in young adults. Further studies are needed to confirm these findings. CLINICAL TRIAL INFORMATION ClinicalTrials.gov no. NCT02365129 (registered 18 February 2015).

Lifestyle medicine

Fundamental Clinical Imbalances : Digestive, absorptive and microbiological
Patient Centred Factors : Mediators/Faecal microbiota
Environmental Inputs : Microorganisms
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Stool ; Imaging

Methodological quality

Jadad score : Not applicable
Allocation concealment : Not applicable
Publication Type : Clinical Trial ; Journal Article

Metadata